푸리에 해석
최근 수정 시각:

이 문서는 떡밥위키 학문 프로젝트에서 다루는 문서입니다.
해당 프로젝트 문서를 방문하여 도움이 필요한 문서에 기여하여 주세요!
해당 프로젝트 문서를 방문하여 도움이 필요한 문서에 기여하여 주세요!
|
1. 개요[편집]
임의의 함수를 삼각함수 혹은 지수함수의 일차결합으로 나타내는 해석 체계. 프랑스의 수학자 푸리에가 자신의 이름을 붙여서 내놓았다. 지수함수와 삼각함수는 본질적으로 같기 때문에 사실상 신호나 함수를 지수함수의 합 혹은 적분으로 표현하는 방법론을 의미한다. 자세한 설명은 위의 영상이 잘해주니 참고할 것. 해석학의 한 갈래로 여겨진다.
2. 푸리에 급수[편집]
주기 함수에서의 푸리에 해석. 주기 함수는 엥간해선 기본 각속도 의 정수배 주파수를 갖는 정현파들의 합으로 분해가 가능하기 때문에 급수의 형태로 일차결합을 표현할 수 있다. 는 순허수 와 같은 수를 가리킨다. 전자공학에서 자주 사용하는 전류기호 와 혼동하지 않기 위해서 로 표현한다.
3. 푸리에 변환[편집]
푸리에 변환:푸리에 역변환:
비주기 함수에서의 푸리에 해석. 비주기 신호는 기본 각속도가 존재하지 않아 푸리에 급수처럼 각속도의 정수배로 성분으로 분해할 수 없다. 때문에 차라리 연속적인 스펙트럼으로 표현하는 방법이 이용되는데 이것이 바로 푸리에 변환이다.
4. 의의[편집]
굳이 왜 이런 귀찮은 짓을 하면서 함수를 개조하는가 싶지만 쓰이는 곳이 많다. 특히나 신호를 시간 단위가 아니라 주파수 단위로 분해하는 방법론은 신호 분석의 기초 중 기초라고 할 수 있다. 더불어 주파수 단위에서 원하는 성분을 증폭시키고 억제하는 동작을 쉽게 구현할 수 있는데 설계하고 이를 푸리에 역변환을 통해 시간 단위에서 구현하면 소위 필터로써 기능하게 된다.
Contents are available under the CC BY-NC-SA 2.0 KR; There could be exceptions if specified or metioned.
개인정보 처리방침
개인정보 처리방침