집합(r16 Blame)

r16
r1

(새 문서)
1[[분류:집합론]]
2[목차]
3== 개요 ==
r2
4어떠한 대상들의 집합으로, [[집합론]]을 포함한 거의 모든 [[수학]] 분야에서 다른 수학적 대상을 구성하는 기층적 요소이다.
5
6== 정의 ==
r4
7[[그런 거 없다]].
r2
8
r5
9정확히는 구성적 정의나 material set theory적 정의 등으로 나뉘는데,[* Shulman, M. (2019). Comparing material and structural set theories. Annals of Pure and Applied Logic, 170(4), 465–504. https://doi.org/10.1016/j.apal.2018.11.002] 이들 각각의 정의가 독립적인 집합론(set theory)을 구축한다. 조금만 생각해봐도 수학적 공리계의 기반을 이루는 대상이나 [[원소]] 그 자체인 집합을 정의하다 보면 [[제1원인론]] 같은 패러독스에 빠질 수 있기 때문. 특히 구성적인 접근법을 취하지 않으면 [[러셀의 역설]] 따위에 빠지기 쉽다. 여담으로 [[범주론]]에서는 집합 자체를 [math(\bf Set)] 범주의 요소 그 자체로 구성한다.
r6
10
r15
11본 문서에서는 구체적으로 집합이 무엇인지에 대해 별 듣보잡 이론(alternative set theory)을 들고와서 논하기 보다는 학부생에게 친숙한 ZFC와 material set theory 기준으로 '공리적 특징'만을 관찰하기로 한다. 즉, '어떤 것이 집합이냐'가 아니라 '집합은 어떤 행동을 한다'에서 시작한다.
r8
12
13집합 [math(A)]가 [math(x)]를 가질 때, 이를 [math(x \in A)]라 표현하며, [math(x)]를 [math(A)]의 원소(element)라고 한다. 이 포크(?)같이 생긴 [math(\in)] 기호를 membership predicate라고 하며, 이름에서 눈치챘겠지만 이 predicate는 부정할 수 있는데, 이를 [math(\neg(x \in A))]라 쓰고 '집합 [math(A)]가 [math(x)]를 원소로 가지지 않는다'고 읽는다. 이따위로 길게 쓰면 학생들의 자살율이 증가하기 때문에 수학자들은 이를 한번에 쓰기 위해 [math(\notin)]이라는 기호를 발명했다. 즉 앞의 predicate는 [math(x \notin A)]로 다시 쓸 수 있다.
r9
14
r11
15well-defined된 집합론에서 원소 여부는 상술했듯이 predicate로 동작하며, 따라서 '[math(A)]의 원소'이거나 '[math(A)]의 원소가 아니'거나 둘 중 하나만 성립한다.[* 이러한 이진성은 유합집합의 멱집합 크기가 2의 거듭제곱으로 주어지는 등 정말 생각지도 않은 기상천외한 곳에서 나타나는 편.]
r12
16
17이제 종합해보자. '어떤 집합' [math(A)]에 대해 우리는 '주어진(free) 원소의 포함 여부'를 결정하는 predicate [math(\in)]을 가진다. 이 predicate를 흔히 수리논리학에서 쓰는 것처럼 [math(P(x))]로 표현해 보자. 예를 들어 [math(x)]에 [math(1)]을 넣었을 때 [math(P(1))]이 참이 되고, [math(x)]에 [math(6)]을 넣었을 때 거짓이 될 수도 있다. 고등학교 1학년때 배웠듯이[* predicate는 FOL이나 형식증명이론에선 주로 술어라고 번역하긴 하는데, 고딩때는 '조건문' 따위 이름으로 배운다. 같은 개념이다.] 이 predicate를 문장이나 조건으로 서술해 보자.
18
19||<tablealign=center><tablebordercolor=transparent><tablebgcolor=transparent>[math(P(x) : \text{$x$가 홀수})]||
20
r16
21이 조건을 참이 되도록 만드는 [math(x)]는 모두 [math(A)]의 원소일 것이고, 반대로 이 조건을 거짓이 되도록 만드는 [math(x)]는 [math(A)]의 원소가 아닐 것이다. 따라서 이 조건을 유일하게[* ZFC의 extensionality axiom으로 유일함이 결정된다. 증명은 ZFC 문서에서.] 만족시키는 [math(A)]가 바로 집합[* 역시 ZFC의 axiom schema of separation으로 집합임이 보장된다.] [math(A)]가 된다.
r13
22
r14
23ZFC를 어떠한 선제공리 없이 membership predicate 하나만으로 구축하기 위해 졸라 장황하게 쓰긴 했지만 결국 이 위의 번거로운 과정들을 수식 한줄 [[딸깍]]으로 축약한 것이 바로 우리가 고등학교때 배우는 '조건제시법'이다.
r13
24
25||<tablealign=center><tablebordercolor=transparent><tablebgcolor=transparent>[math(A = \{x \mid \text{$x$가 홀수}\})]||
26