집합(비교)
r15 vs r16 | ||
---|---|---|
... | ... | |
18 | 18 | |
19 | 19 | ||<tablealign=center><tablebordercolor=transparent><tablebgcolor=transparent>[math(P(x) : \text{$x$가 홀수})]|| |
20 | 20 | |
21 | 이 조건을 참이 되도록 만드는 [math(x)]는 모두 [math(A)]의 원소일 것이고, 반대로 이 조건을 거짓이 되도록 만드는 [math(x)]는 [math(A)]의 원소가 아닐 것이다. 따라서 이 조건을 유일하게[* ZFC의 extensionality axiom으로 유일함이 결정된다. 증명은 ZFC 문서에서.] 만족시키는 [math(A)]가 바로 집합 [math(A)]가 된다. |
|
21 | 이 조건을 참이 되도록 만드는 [math(x)]는 모두 [math(A)]의 원소일 것이고, 반대로 이 조건을 거짓이 되도록 만드는 [math(x)]는 [math(A)]의 원소가 아닐 것이다. 따라서 이 조건을 유일하게[* ZFC의 extensionality axiom으로 유일함이 결정된다. 증명은 ZFC 문서에서.] 만족시키는 [math(A)]가 바로 집합[* 역시 ZFC의 axiom schema of separation으로 집합임이 보장된다.] [math(A)]가 된다. |
|
22 | 22 | |
23 | 23 | ZFC를 어떠한 선제공리 없이 membership predicate 하나만으로 구축하기 위해 졸라 장황하게 쓰긴 했지만 결국 이 위의 번거로운 과정들을 수식 한줄 [[딸깍]]으로 축약한 것이 바로 우리가 고등학교때 배우는 '조건제시법'이다. |
24 | 24 | |
... | ... |