집합(비교)
r11 vs r12 | ||
---|---|---|
... | ... | |
13 | 13 | 집합 [math(A)]가 [math(x)]를 가질 때, 이를 [math(x \in A)]라 표현하며, [math(x)]를 [math(A)]의 원소(element)라고 한다. 이 포크(?)같이 생긴 [math(\in)] 기호를 membership predicate라고 하며, 이름에서 눈치챘겠지만 이 predicate는 부정할 수 있는데, 이를 [math(\neg(x \in A))]라 쓰고 '집합 [math(A)]가 [math(x)]를 원소로 가지지 않는다'고 읽는다. 이따위로 길게 쓰면 학생들의 자살율이 증가하기 때문에 수학자들은 이를 한번에 쓰기 위해 [math(\notin)]이라는 기호를 발명했다. 즉 앞의 predicate는 [math(x \notin A)]로 다시 쓸 수 있다. |
14 | 14 | |
15 | 15 | well-defined된 집합론에서 원소 여부는 상술했듯이 predicate로 동작하며, 따라서 '[math(A)]의 원소'이거나 '[math(A)]의 원소가 아니'거나 둘 중 하나만 성립한다.[* 이러한 이진성은 유합집합의 멱집합 크기가 2의 거듭제곱으로 주어지는 등 정말 생각지도 않은 기상천외한 곳에서 나타나는 편.] |
16 | ||
17 | 이제 종합해보자. '어떤 집합' [math(A)]에 대해 우리는 '주어진(free) 원소의 포함 여부'를 결정하는 predicate [math(\in)]을 가진다. 이 predicate를 흔히 수리논리학에서 쓰는 것처럼 [math(P(x))]로 표현해 보자. 예를 들어 [math(x)]에 [math(1)]을 넣었을 때 [math(P(1))]이 참이 되고, [math(x)]에 [math(6)]을 넣었을 때 거짓이 될 수도 있다. 고등학교 1학년때 배웠듯이[* predicate는 FOL이나 형식증명이론에선 주로 술어라고 번역하긴 하는데, 고딩때는 '조건문' 따위 이름으로 배운다. 같은 개념이다.] 이 predicate를 문장이나 조건으로 서술해 보자. |
|
18 | ||
19 | ||<tablealign=center><tablebordercolor=transparent><tablebgcolor=transparent>[math(P(x) : \text{$x$가 홀수})]|| |
|
20 | ||
21 | 이 조건을 참이 되도록 만드는 [math(x)]는 모두 [math(A)]의 원소일 것이고, 반대로 이 조건을 거짓이 되도록 만드는 [math(x)]는 [math(A)]의 원소가 아닐 것이다. 따라서 이 조건을 유일하게[* ZFC의 extensionality axiom으로 유일함이 결정된다. 증명은 ZFC 문서에서.] 만족시키는 [math(A)]가 바로 집합 [math(A)]가 된다. |