떡밥위키
최근 변경
최근 토론
특수 기능
파일 올리기
작성이 필요한 문서
고립된 문서
고립된 분류
분류가 되지 않은 문서
편집된 지 오래된 문서
내용이 짧은 문서
내용이 긴 문서
차단 내역
RandomPage
라이선스
IP 사용자
216.73.216.107
설정
다크 모드로 전환
로그인
서버 점검 공지
|
개인정보 처리방침 개정 안내
최대 정수 함수
(r1 문단 편집)
이 문서는
이 문단은
토론
을 통해 표제어를 최대 정수 함수로 하기로 합의되었습니다.
합의된 부분을 토론 없이 수정할 시
주딱
의 기분에 따라 제재될 수 있습니다.
아래 토론들로 합의된 편집방침이 적용됩니다.
합의된 부분을 토론 없이 수정할 시
주딱
의 기분에 따라 제재될 수 있습니다.
[ 내용 펼치기 · 접기 ]
토론
- 표제어를 최대 정수 함수로 하기
토론
- 합의사항2
토론
- 합의사항3
토론
- 합의사항4
토론
- 합의사항5
닫기
RAW 편집
미리보기
=== 방정식 및 부등식의 풀이 === 고교 교과과정에서 최대 정수 함수가 포함된 방정식이 등장한다. 미지수에 이 기호가 있는 경우, 그 해를 쉽게 찾는 방법이 특별한 해법이 있지는 않다. 최대 정수 함수에 관한 기호를 이용하면 특이한 해를 가지는 방정식을 얼마든지 만들 수 있다. 이런 방정식의 가장 기초적인 해법은 일반적으로 [math(\left\lfloor x\right\rfloor)]가 미지수로 주어진 방정식에서는 [math(t = \left\lfloor x\right\rfloor)]등으로 [[치환]]하여 해를 먼저 구한 후, 그 해들 중 정수인 것만을 찾는 방법을 사용한다. [math(t)]로 치환했을 때 해를 구할 수 있는 함수 꼴로 나오는 경우에만 일반적인 해법을 적용하여 해를 구할 수 있다. 최대 정수 함수 기호가 사용된 방정식은 기호로 묶인 부분을 치환하는 방법으로 풀 수 있다. 예를 들어 [math(a\left\lfloor bx+c\right\rfloor+d = 0)]이란 식은 [math(t = \left\lfloor bx+c\right\rfloor)]로 놓고 [math(at+d = 0)]로 변형하여 [math(t)]의 해를 먼저 구한 뒤, 환원하여 [math(x)]의 해를 구하는 것이다. 이는 최대 정수 함수가 중첩되어 사용된 경우에도 확장하여 적용이 가능하다. 하지만 치환으로 해결할 수 없는 경우에는 대체로 일반적인 해법이 존재하지 않는다. 아래의 예제들만 봐도 단순해 보이는 경우에도 여러 경우의 수가 나오는 것을 확인할 수 있다. 아래 언급되는 간단한 방정식의 경우도 다양한 경우가 나온다. * 최대 정수 함수 특성상 방정식의 해가 부등식 처럼 특정한 범위로 나올 수 있다. [math(\left\lfloor x\right\rfloor=1)] 의 해집합은 [math(1 \le x < 2)] 를 만족하는 모든 실수이다. 반대로 임의의 두 실수 [math(a)], [math(b)] [math(\left(a<b\right))]가 [math(a \le x < b)]를 만족할 때, 다음과 같은 방식으로 동치인 식을 만들어 낼 수 있다. 각 변에서 [math(a)]를 빼고 [math((b-a))]로 나누면 식은 [math(0 \le \dfrac{x-a}{b-a} < 1)]로 변형된다. 그리고 이 식은 [math(\left\lfloor\dfrac{x-a}{b-a}\right\rfloor = 0)]과 같다. 그러나 최대 정수 함수의 특성상 해가 없는 경우도, 단 한 개의 해를 가지는 경우도, 여러 개의 해를 가지는 경우도, 무한한 해를 가지는 경우도 모두 존재한다. * [math(2\left\lfloor x\right\rfloor = 1)] 이라는 방정식은 [math(\left\lfloor x\right\rfloor=\dfrac12)]이 되므로 이 방정식의 해는 존재하지 않는다. * [math(2x - \left\lfloor x\right\rfloor = 0)]은 해가 [math(x=0)] , [math(x=-\dfrac12)]이다. * [math(2x - \left\lfloor x\right\rfloor - \dfrac12 = 0)]은 해가 [math(x=\pm\dfrac14)]로 [math(2)]개이다. * [math(\dfrac32x - \left\lfloor x\right\rfloor - \dfrac1{10} = 0)]은 해가 [math(3)]개이며 [math(\dfrac{133}{100}x - \left\lfloor x\right\rfloor + \dfrac1{10} = 0)]은 해가 [math(4)]개이고, [math(\dfrac54x - \left\lfloor x\right\rfloor + \dfrac1{10} = 0)]은 해가 [math(5)]개나 된다. [math(x)]의 기울기를 잘 조절하면 임의의 개수의 해를 가지는 방정식을 만들 수 있다. 그래프로 장난질을 좀 치면 [[https://www.wolframalpha.com/input/?i=plot+floor(x%2F3)+-+(x%2F3)%2B+1+%3D+1.1x+-+floor(x),++-11+%3C+x++%3C+11|이런 해집합]]을 가지는 방정식도 만들 수 있다. * 이산적인 해가 무한히 존재하는 방정식도 있다. 예를 들어 [math(x - \left\lfloor x\right\rfloor = 0)]이라는 방정식은 '''모든 정수'''가 해이다. * [math(\left\lfloor x\right\rfloor - \left\lfloor x - 0.3\right\rfloor)]의 값은 [math(x)]의 소수 부분이 [math(0.3)] 미만이면 [math(1)]이고, [math(0.3)] 이상이면 [math(0)]이다. 좀더 일반적으로 [math(\left\lfloor x\right\rfloor - \left\lfloor x - a\right\rfloor ~\left(0<a<1\right))] 꼴의 식은 [math(x)]의 소수부분이 [math(a)] 미만이면 [math(1)]이고, [math(a)] 이상이면 [math(0)]이다. 그러므로 [math(\left\lfloor x\right\rfloor - \left\lfloor x - 0.3\right\rfloor = 1)]이라는 방정식을 세우면 [math(1)]의 주기를 가지는 [[직각파|펄스 형태]]의 해 집합이 나타난다.[* 반대로 이야기하면, 펄스 함수를 이 최대 정수 함수를 이용해서 표현할 수도 있다.] * 심지어는 [[Tupper's self-referential formula|그래프가 자기 자신의 식을 그리는 것]]도 만들 수 있다.
요약
문서 편집을
저장
하면 당신은 기여한 내용을
CC BY-NC-SA 2.0 KR
또는
기타 라이선스 (문서에 명시된 경우)
로 배포하고 기여한 문서에 대한 하이퍼링크나 URL을 이용하여 저작자 표시를 하는 것으로 충분하다는 데 동의하는 것입니다. 이
동의는 철회할 수 없습니다.
비로그인 상태로 편집합니다. 로그인하지 않은 상태로 문서 편집을 저장하면, 편집 역사에 본인이 사용하는 IP(216.73.216.107) 주소 전체가 영구히 기록됩니다.
저장
사용자
216.73.216.107
IP 사용자
로그인
회원가입
최근 변경
[불러오는 중...]
최근 토론
[불러오는 중...]