접속자 폭증으로 서버 상태가 원활하지 않습니다 | 소유권 이전과 관련한 공지
r18 vs r19
... ...
26 26
다만 페아노 공리계와 ZFC 공리계가 분리되어 있는 이유는, 당연히 공리의 의존성을 줄이고 순도를 높이기 위해서이다. ZFC에 대부분의 도구가 정의되어 있으니 '~가 존재한다는 걸 공리로 가정(assume)'할 필요 없이 '~가 존재한다는 걸 증명(prove)'하기만 하면 되는 건 편하지만, ZFC는 ZFC고 이와 호환되지 않는 다른 well-defined된 다른 공리계들도 존재한다. 그런 공리계에서조차 '자연수'라는 개념을 공리적으로든, 구성적으로든 하여간 어떠한 방법으로든 '구현'하기 위해서 필요한 게 페아노 공리계, 즉 일종의 '<자연수 만들기 레시피> [재료는 알아서 구하셈 ㅇㅇ]'와 같다.
27 27
28 28
일례로 람다 대수에서는 0을 False로 가정하고, successor를 [math(\lambda n.\lambda f.\lambda x.f((n f) x))]로 정의한 다음 처치 부호화를 사용해 자연수를 정의하지만, 0과 successor가 존재하기 때문에 람다 함수의 합성이라는 뇌내에 떠올리기조차 힘든 괴랄한 구조(?)임에도 불구하고 람다 대수에서 자연수 집합에 작용하는 모든 명제가 성립한다는 것을 증명할 수 있다.
29
30
== 의의 ==
31
이 공리계 하나 때문에 지금까지도 페아노는 대중들의 인식 속에 '1 + 1이 2라는 걸 증명할려고 4시간동안 연설한' 수학자로 남아 있다(...). 대부분 '수학쟁이들은 엄밀한 증명을 보면 풀발기함'의 예시 정도로 언급되고 끝나지만, 실제로 위 다섯 개의 공리만으로 자연수라는 구조 위의 덧셈 연산을 잘 정의(well-define)하고 증명할 수 있다는 것은 실로 놀라운 발전이다.